Fast Circulant Tensor Power Method for High-Order Principal Component Analysis
نویسندگان
چکیده
منابع مشابه
Fast Tensor Principal Component Analysis via Proximal Alternating Direction Method with Vectorized Technique
This paper studies the problem of tensor principal component analysis (PCA). Usually the tensor PCA is viewed as a low-rank matrix completion problem via matrix factorization technique, and nuclear norm is used as a convex approximation of the rank operator under mild condition. However, most nuclear norm minimization approaches are based on SVD operations. Given a matrix m n × ∈ X , the time...
متن کاملGeneralized Power Method for Sparse Principal Component Analysis
In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal component of a data matrix, or more components at once, respectively. While the initial formulations involve nonconvex functions, and are therefore computa...
متن کاملPrincipal Component Analysis with Tensor Train Subspace
Tensor train is a hierarchical tensor network structure that helps alleviate the curse of dimensionality by parameterizing large-scale multidimensional data via a set of network of low-rank tensors. Associated with such a construction is a notion of Tensor Train subspace and in this paper we propose a TTPCA algorithm for estimating this structured subspace from the given data. By maintaining lo...
متن کاملTensor principal component analysis via convex optimization
This paper is concerned with the computation of the principal components for a general tensor, known as the tensor principal component analysis (PCA) problem. We show that the general tensor PCA problem is reducible to its special case where the tensor in question is supersymmetric with an even degree. In that case, the tensor can be embedded into a symmetric matrix. We prove that if the tensor...
متن کاملFast First-order Methods for Stable Principal Component Pursuit¶
The stable principal component pursuit (SPCP) problem is a non-smooth convex optimization problem, the solution of which has been shown both in theory and in practice to enable one to recover the low rank and sparse components of a matrix whose elements have been corrupted by Gaussian noise. In this paper, we first show how several existing fast first-order methods can be applied to this proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3074930